# CITF Interval of Convergence of The Power Series Exam Practice

Description

10.1, 10.2 Sequences
Tuesday, June 22, 2021
6:02 PM
New Section 1 Page 1
New Section 1 Page 2
New Section 1 Page 3
New Section 1 Page 4
New Section 1 Page 5
New Section 1 Page 6
New Section 1 Page 7
10.3, 10.4 Series
Tuesday, June 29, 2021
6:04 PM
New Section 1 Page 1
New Section 1 Page 2
New Section 1 Page 3
New Section 1 Page 4
New Section 1 Page 5
New Section 1 Page 6

New Section 1 Page 7
New Section 1 Page 8
New Section 1 Page 9
New Section 1 Page 10
New Section 1 Page 11
New Section 1 Page 12
10.5, 10.6 Comparison Tests, Alternating Series
Tuesday, July 6, 2021
6:02 PM
New Section 1 Page 1
New Section 1 Page 2
New Section 1 Page 3
New Section 1 Page 4
New Section 1 Page 5
New Section 1 Page 6
New Section 1 Page 7
New Section 1 Page 8
New Section 1 Page 9
New Section 1 Page 10
11.2 Power Series
Thursday, July 15, 2021
6:02 PM
New Section 1 Page 1
New Section 1 Page 2
New Section 1 Page 3
New Section 1 Page 4
New Section 1 Page 5
New Section 1 Page 6
New Section 1 Page 7
New Section 1 Page 8
New Section 1 Page 9
New Section 1 Page 10
New Section 1 Page 11
11.3 Taylor, MacLaurin Series
Tuesday, July 20, 2021
6:03 PM
New Section 1 Page 1
New Section 1 Page 2
New Section 1 Page 3
New Section 1 Page 4
New Section 1 Page 5
New Section 1 Page 6
New Section 1 Page 7
New Section 1 Page 8
New Section 1 Page 9
CALCULUS โ II (Su21) EXAM โ IV
(all work must be clearly shown and explained step by step, otherwise it will be considered
as an app work, and no credit will be given. Give yourself enough time so that you can
(๐ฅโ2)๐
1. Find the interval of convergence of the power series โโ
๐=1 4
โ๐+3
4
2. Find the 6-th Taylor polynomial of ๐(๐ฅ) = โ๐ฅ centered at c = 1, and use the polynomial to
4
approximate โ1.4.
4
3. Find a power series centered at c = 3 for ๐(๐ฅ) = 9โ2๐ฅ
3
4. Find the MacLaurin series of ๐(๐ฅ) = ๐ 2๐ฅ then of ๐(๐ฅ) = ๐ โ2๐ฅ . Use the first six terms of the
3
1
last series to approximate โซ0 ๐ โ2๐ฅ ๐๐ฅ
5. Find the interval of convergence of the power series โโ
๐=1
(๐ฅ+1)๐
๐4 +2
๐!
6. Use the Ratio Test to determine the convergence of โโ
๐=0 ๐๐
7. Find a Maclaurin series of ๐(๐ฅ) = ๐๐๐  ๐ฅ ๐กโ๐๐ ๐๐๐ ๐๐๐ ( ๐ฅ 5 ). Use the first five terms of
1
the series to approximate โซ0 ๐๐๐ ( ๐ฅ 5 )๐๐ฅ
11
8. Find a power series centered at c = -4 for ๐(๐ฅ) = 16+3๐ฅ
๐
9. Use the Root Test to determine the convergence of: โโ
๐=1(1 โ 7/๐) . If the test fails, use a
different one.
1
1
10. Find a power series representation for ๐(๐ฅ) = 1+๐ฅ then for ๐(๐ฅ) = 1+๐ฅ 2 , and use the first
1
seven terms of the appropriate series to approximate โซ0 ๐๐๐๐ก๐๐( ๐ฅ 4 )๐๐ฅ.
11. Find a Maclaurin series of ๐(๐ฅ) = ๐ ๐๐ ๐ฅ ๐กโ๐๐ ๐๐๐ ๐ ๐๐( ๐ฅ 6 ). Use the first five terms of
1
the series to approximate โซ0 ๐ ๐๐( ๐ฅ 6 )๐๐ฅ
12. Find the 6-th Taylor polynomial of ๐(๐ฅ) = โ๐ฅ centered at c = 9, and use the polynomial to
approximate โ9.5