Description
100 math questions
Precalculus – Mr K
Name___________________________________ ID: 1
©z a2G0J2X1f dKJuWthaw LSkocf[t`wgagrieP lLxLrCt.^ g QAolglX nrAiFgbhxtUsz tryeTsieyrbv`ekdr.
Math Analysis OPTIONAL Final
Date________________ Period____
Find the amplitude, the period in radians, and the LINEAR phase shift in radians.
(
q 2p
+
8
3
A) Amplitude: 2
2p
Period:
7
1) y = 10cos
)
A)
Phase shift: Right
B)
p
28
B) Amplitude: 10
Period: 16p
Phase shift: Left
p
15
C)
C) Amplitude: 10
Period: 16p
Phase shift: Right
D)
16p
3
D) Amplitude: 10
Period: 16p
Phase shift: Left
( )
q p
+
8 2
Amplitude: 8
Period: 16p
Phase shift: Left 4p
Amplitude: 7
2p
Period:
7
3p
Phase shift: Left
28
Amplitude: 8
Period: 16p
Phase shift: Right 4p
Amplitude: 8
Period: 16p
p
Phase shift: Left
16
2) y = 8sin
16p
3
Worksheet by Kuta Software LLC
-1-
©d H2P0[2D1u aKwuYtBac `SwoLfttPwNawrCe` WLmLoCo.Y s eADlllg `rUijgUhatHsv ^rBeYslekrKvXe_dZ.S r ZMLaJdzeZ jw_i\tmhL YIyntfviwnuiZtCef qPUrfetceaklXcZullyuzsH.
1
× cos q
7
Amplitude: None
Period: 5p
5p
Phase shift: Left
3
1
Amplitude:
7
Period: 2p
Phase shift: None
Amplitude: 1
2p
Period:
7
5p
Phase shift: Right
42
Amplitude: 1
2p
Period:
3
5p
Phase shift: Right
18
3) y =
A)
B)
C)
D)
( )
q p
+
2 3
A) Amplitude: 7
Period: 4p
4) y = 7sin
Phase shift: Left
2p
3
B) Amplitude: 7
Period: 4p
Phase shift: Left
p
21
C) Amplitude: 7
Period: 4p
Phase shift: Right
2p
3
D) Amplitude: 4
2p
Period:
7
Phase shift: Left
5p
28
Worksheet by Kuta Software LLC
-2-
©e ]2i0Z2V1\ tKxuhteaR CSKoDfytbwfaZrreg _LeLbCo.T k oAllPl[ JrOitghhTtDsf mrCePsgeircv\e]dW.P w bMqaOdFeO FwribtRhp XILnbfSiEnCiitCeP sPirzelcZaXlecHumlAu]st.
Graph the function
5) y =
(
1
q 5p
× cos
2
4
6
)
6) y =
A)
(
1
5p
× cos 3q +
2
6
)
A)
6
6
4
4
2
2
2p
4p
6p
8p 10p 12p
-2
-2
-4
-4
-6
-6
B)
p
2
p
3p
2
2p
B)
6
6
4
4
2
2
2p
4p
6p
8p 10p 12p
p
-2
-2
-4
-4
-6
-6
C)
2p
3p
C)
6
6
4
4
2
2
2p
4p
6p
8p 10p 12p
-2
-2
-4
-4
-6
-6
D)
p
2
p
3p
2
2p
p
2
p
3p
2
2p
D)
6
6
4
4
2
2
p
2p
3p
-2
-2
-4
-4
-6
-6
Worksheet by Kuta Software LLC
-3-
©b a2^0`2R1w VKPuFtYaE XSmogfBtJwJa^rTeQ VLFL_CW.e _ mAElslN QrDiNg_hmtSsx Dr[eDsveVrrvCetdJ.m E LMsaOdheO FwAiDtnhg WInntfCiSnkiUteeh VPnr^epcPaNlocSuulRuSsL.
(
7) y = 3cos 2q +
p
4
)
( )
8) y = 3cos q +
A)
p
3
A)
6
6
4
4
2
2
p
2p
3p
-2
-2
-4
-4
-6
-6
B)
p
2p
3p
p
2p
3p
p
2p
3p
p
2p
3p
B)
6
6
4
4
2
2
-2
p
2
p
3p
2
2p
-2
-4
-4
-6
-6
C)
C)
6
6
4
4
2
2
-2
p
2
p
3p
2
2p
-2
-4
-4
-6
-6
D)
D)
6
6
4
4
2
2
-2
p
2
p
3p
2
2p
-2
-4
-4
-6
-6
Worksheet by Kuta Software LLC
-4-
©F R2V0V2r1X TKcuhtVa_ iSvoEfttTwcawrpeS oLhLoCM.i q [Ahlllq rrTiUg\h^tNsc prHeoswedrnvoeZdr.r f JMkaQdgeA owyistthR AIynif[iBnhintLey KPurfeMc`aUlRcPuilbuqsW.
Write each trigonometric expression as an algebraic expression.
9) sin sin -1 x
x
A)
C)
10) csc cos -1 x
B)
1 + x2
1
x
1 – x2
D) x
C)
x
B)
2
1-x
1 – x2
x
D)
1
C)
1+x
1
1 – x2
1 – 4x
1 – x2
D)
1 – x2
1
x
1 + x2
x
3 – cos -1 x)
2x 2 – 2 + 2
2x
4x + 3 – 48x 2
B)
2
x + 3 – 3x 2
C)
2
4 – x2
D)
2
A)
2
1-x
2x 3 +
B)
2
14) cos (tan -1
2 – 8x 2
2x 2 +
1+x
x
C)
1 – 4x 2
2
D)
D)
1
A)
2
2
B)
1 + x2
1
12) cos tan -1 x
13) cos (cos -1 x – sin -1 1)
A)
x
B)
1 – x2
C)
11) tan sin -1 x
A)
A) x
2
Solve each equation for 0 £ q
Purchase answer to see full
attachment